

Multi-objective optimization to get the best tolerance-cost design

An effective application on a high performance engine

Andrea Petruccioli, Fabio Pini, Francesco Leali

"Enzo Ferrari" Department of Engineering, University of Modena and Reggio Emilia

1. Background

- Geometric and Dimensional Tolerances (GD&T) are the main contributors on quality and cost of industrial products
- Dimensional Management (DM) approach through GD&T
- Estimation of production costs

Tolerance-cost optimization

Issues

- Lack of **integration** between DtC and DfT
- Lack of **methodological approach** on tolerance-cost optimization
- Lack of a systematic assessment from **Computer-Aided** tools

2. Aim and Methodology

Optimal selection of product tolerances

Design-to-Cost (DtC)

Production costs as a design constraint

- Identify cost factors as early as possible
- Eliminate expensive designs
- Increase flexibility with respect to market changes and new requirements

Product Cost Management (PCM) software

Design-for-Tolerancing (DfT)

Optimize permissible variations of products

- Simulation-based engineering methodology to analyze dimensional quality
- Improve product quality achieving functional targets
- Enable robust design

Computer-Aided Tolerancing (CAT) software

Model-Based approach for Tolerance-Cost Multi-Objective Optimization

Modelling and

Adopted Software

- Combine DtC and DfT approaches
- Include analysis of manufacturing and assembly into product design environment

Through

- Model-Based approach with **Product Manufacturing Information (PMI)**
- Multi-Disciplinary Optimization (MDO) environment
- Integration of dimensional variation simulations and manufacturing cost estimation

3. Industrial application

- V12 engine tolerance-cost optimization
- **Tolerance design** for functionality and cost reduction
- Engine block, crankshaft and thrust washers (x2)
- Functional requirement: axial distance between crankshaft shoulders and engine block shoulders
- GD&T inserted on the 3D models as semantic PMI
- Optimization set-up: 4 components, 26 tolerances, 5 objectives
- Multi-Strategy Self-Adapting pilOPT Algorithm, 600 evaluations

4. Optimization results

• A set of 67 configurations achieves the functional requirement (Cpk \geq 1.33)

Optimal configurations are identified and selected considering Total Cost, Cpk, Number of Rejects**

- #0 = starting configuration #463 = Best Cpk
- **#527 = Best trade off** #575 = Least cost

ID	Crankshaft	Thrust washer		Engine Block	Ass. Op.*	Total Cost	Cpk	DPMU**
0	\$ 1133.22	\$ 1.67	\$ 1.67	\$ 197.00	\$ 2.25	\$ 1335.81	1.29	95.21
463	\$ 1133.20	\$ 1.24	\$1.68	\$ 190.87	\$ 2.25	\$ 1329.24	1.59	1.54
527	\$ 1133.20	\$ 1.24	\$ 1.24	\$ 190.85	\$ 2.25	\$ 1328.78	1.48	7.28
575	\$ 1133.20	\$ 1.24	\$ 1.24	\$ 189.94	\$ 2.25	\$ 1327.87	1.42	17.75
6	Outlook		*Assembly Operation Cost; **Defects Per Million Units					
Ь.								

- Stress the approach with respect to further industrial products
- Extend optimization variables to nominal dimensions and tolerance schemes

5. Conclusions

- Optimal selection of tolerance types and associated ranges
- Concurrent view of tolerance effects on performance and costs
- Process integration and automation

Obtain maximum quality at the lowest possible cost

100.3A

Acknowledgment The authors thank Eng. Fabrizio Minarelli form Automobili Lamborghini S.p.A. for the valuable support

International CAE Conference and Exhibition November, 17 – 19, 2021

Vicenza, Italy